

JEE ADV - PHYSICS DPP -02

21 JAN 2020

TOPICS: LAWS FO MOTION SOLUTION

1.

If 'C' moves with constant speed

$$a_{c} = 0$$

$$F - T_{0} - f_{2} - f_{3} = 0$$

$$-f_{1} + T_{0} - f_{2} = 0$$

$$T = f_{1}$$

$$f_{1} = \frac{3}{4}g, \qquad f_{2} = \frac{7}{4}g, \qquad f_{3} = \frac{15g}{4}$$
Solving,
$$F = 8g, N$$

2. If they move with common acceleration then,

$$a = \frac{100}{40 + 10} = 2 \text{ m/s}^2$$
=20N

Pseudo force on block = $10 \times 2 = 20 \text{ N}$

Net force = $100 \div 20 = 80 \text{ N}$

$$f_{s \max} = \mu_s \times 10 \times 10 = 60 \text{ N}$$

: 80 N > 60 N

there will be relative motion.

Now, FBD of block and slab will be

$$\begin{array}{lll} \therefore & 100 - f_k = 10a_1 & f_k = 40a_2 \\ 100 - 0.4 \times 10 \times 10 = 10a_1 & 0.4 \times 10 \times 10 = 40a_2 \\ \therefore & a_1 = 6 \text{ m/s}^2 & \therefore & a_2 = 1 \text{ m/s}^2 \end{array}$$

3. Let both move with same acceleration.

$$F-f=Ma$$
 $f=ma$
From Eqs. (i) and (ii)
 $F=(m+M)f$

when f is maximum,

$$F = \mu(m+M)g$$

For slipping to start

$$F > \mu(m+M)g$$

Now,
$$a_1 = \frac{F - \mu mg}{M}$$

and
$$a_2 = \mu g$$

$$\therefore \qquad a_r = a_1 - a_2 = \frac{F - \mu(m+M)g}{M}$$

$$\therefore L = \frac{1}{2}a_r t^2$$

$$t = \sqrt{\frac{2L}{a_r}} = \sqrt{\frac{2ML}{F - \mu(m+M)g}}$$

as
$$N_A = N_B$$

Now

$$\mu_A N_A + \mu_B N_B = Mg$$

$$N_A [\mu_A + \mu_B] = Mg$$

$$N_A [\mu_A + \mu_B] = Mg$$

$$N_A = \frac{Mg}{\mu_A + \mu_B}$$

(b)

$$f_A = \mu_A N_A$$

Now percent of weight supported by it is

$$=\frac{\mu_A N_A}{Mg} \times 100$$

5.

F.B.D. of m_2

$$P + M_2 g \sin \theta = \mu_1 N_1 + \mu_2 N_2$$

 $P + M_2 g \sin \theta = \mu_1 M_1 g \cos \theta + \mu_2 g \cos \theta (M_1 + M_2)$ By solving this equation, we get value of P.

6. For upper block

$$f_1 = 5 \times a_1$$
$$a_1 = 0.98 \text{ m/sec}^2$$

For lower block

$$F - \mu_k N_1 - \mu_k N_2 = M \times a_2$$

$$F - 0.1 \times 5 \times 9.8 - 0.4 \times 20 \times 9.8 = 15 \times a_2 \qquad \dots (i)$$
[Value of $F = \frac{3}{10} \times 5 \times 4.9 + \frac{5}{10} \times 20 \times 4.9$]

By putting this value of F in equation (i), we get a_2

7. (a) F.B.D. of block

$$F_{\text{max}} = \mu_S N$$

 $2F - F = M \times a$

(b) F.B.D. of bracket

Mg